CREAM: un nuevo método autorrecompensante que permite al maniquí estudiar de forma más selectiva y exagerar datos de preferencias confiables

Uno de los desafíos más críticos de los LLM es cómo alinear estos modelos con los títulos y preferencias humanos, especialmente en los textos generados. La mayoría de los resultados de texto generados por los modelos son inexactos, sesgados o potencialmente dañinos (por ejemplo, alucinaciones). Esta desalineación limita el uso potencial de los LLM en […]